Automating the Balance of Energy Performance with Occupant Comfort with Smart Fenestrations

Dr. Kristen Cetin, P.E., LEED AP

Assistant Professor

Civil Construction and Environmental Engineering

Mechanical Engineering

BACKGROUND

B.S. Civil Engineering

University of Maryland, College Park

M.S. Civil Engineering

University of Maryland, College Park

Ph.D. Civil & Architectural Engineering

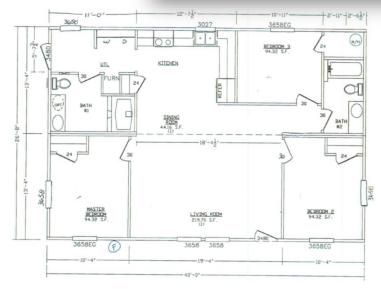
University of Texas at Austin

Staff Engineer, P.E., LEED BD+C

Simpson Gumpertz & Heger

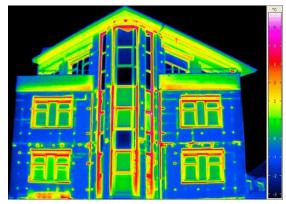
Research Associate

National Renewable Energy Lab


Engineering of Structures and Building Enclosures

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

RESEARCH LAB: Smart Building Test Facilities


2 identical 1,100 sq ft buildings

Whole-building and submetering capabilities for 30+ circuits per building Built to current IECC 2015 standards

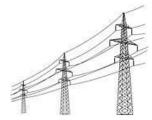
Adjustable interior and envelope features based on research needs

Internal load automation

RESEARCH GOALS

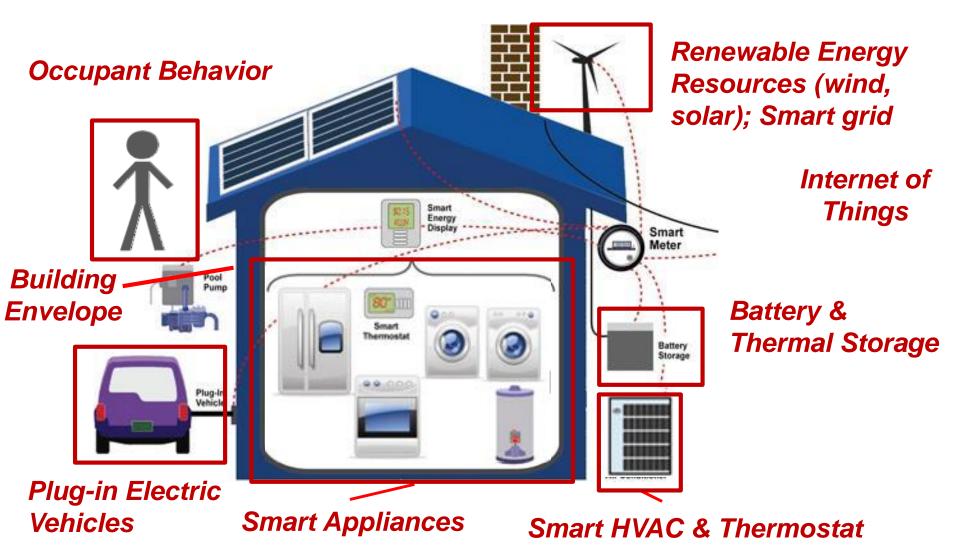
Building Science & Technology

Buildings


Energy Efficient

Flexible

Healthy, Productive


Long-Lasting / Durable

Resilient

Smart & Connected Technologies, IoT & Data

SMART BUILDINGS: Components & Interactions

IOWA STATE UNIVERSITY

College of Engineering | Department of Civil, Construction and Environmental Engineering

FUNDED & ONGOING RESEARCH: Towards Smarter

Infrastructure Systems

A Framework for Assessing the Impact of Extreme Heat and Drought Climate Scenarios on Urban Energy Production and Consumption

Effects of Dynamic Shading Devices on Daylighting and Energy Performance of Office Perimeter Zones

Adaptive, Multi-Layered Fenestration Elements for Optimum Building Energy Performance and Occupant Comfort

Simulation, Challenge Testing & Validation of Occupancy Recognition and CO2 Technologies

Data-Driven Modeling for Energy Use Predictions, Disaggregation and Energy Efficiency Evaluation of Residential Buildings

Residential Energy Efficiency Investment Behaviors and Non-Energy Benefits

Impact Of Utilizing Electric Ground Power Systems On Airport Electricity Demand Profile

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

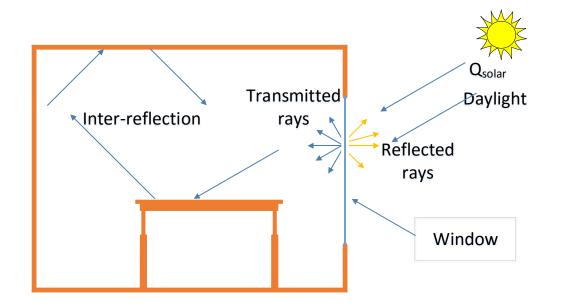
iowa energy

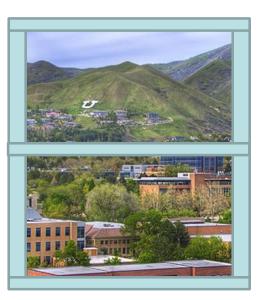
ASHRAE

CEDAR FALLS UTILITIES

Automating the Balance of <u>Energy Performance</u> with <u>Occupant Comfort</u> with <u>Smart Fenestrations</u>

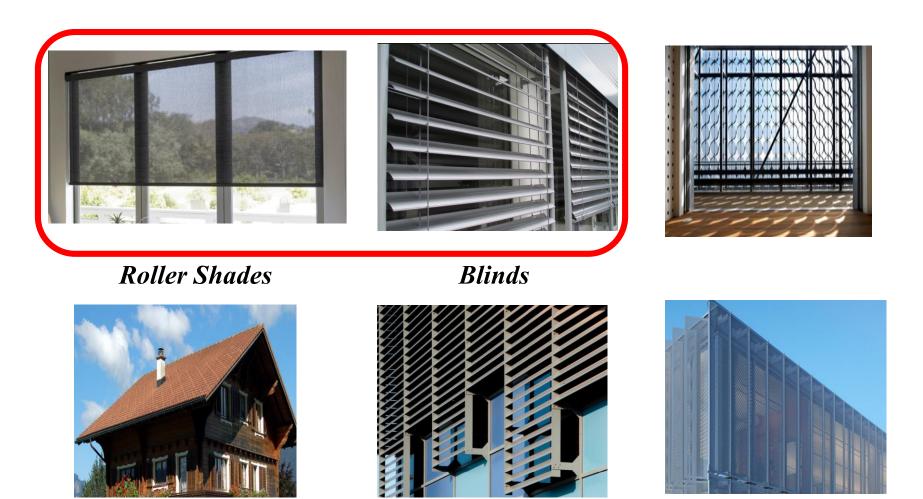
Effects of Dynamic Shading Devices on Daylighting and Energy Performance of Office Perimeter Zones


Adaptive, Multi-Layered Fenestration Elements for Optimum Building Energy Performance and Occupant Comfort



MOTIVATION: Impacts of Windows on Building Energy Use & Demands

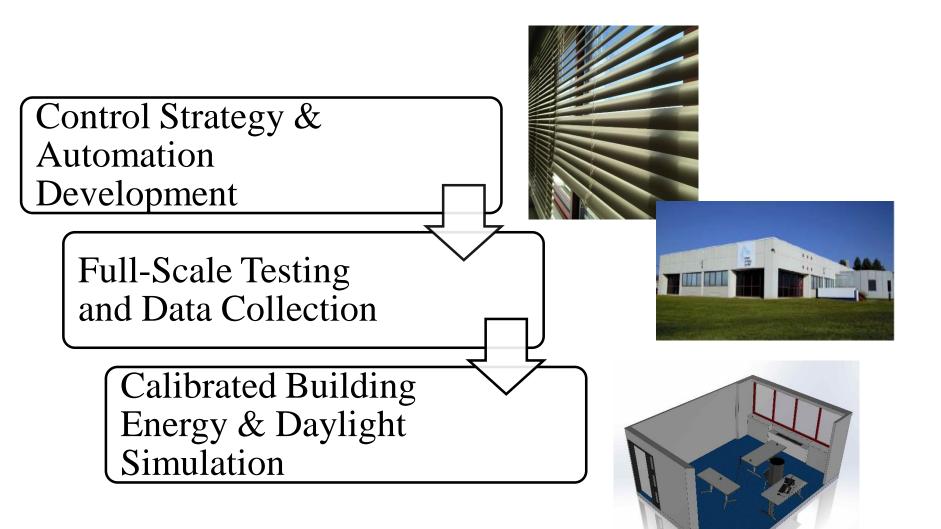
2.15 Quads of heating energy demand1.42 Quads of cooling energy demand


Impacts on Visual Comfort and Thermal Comfort & Occupant Satisfaction (Views)

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

MOTIVATION: *Types of Shading Devices*

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

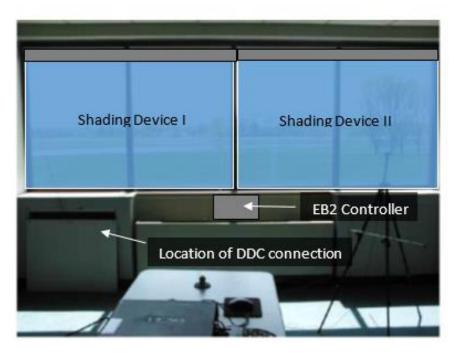

GOALS: Dynamic, Automated Shading Devices

<u>Goals:</u>

- Autonomously control the roller shades or venetian blinds based on sensor and data feedback
- Reduced energy consumption & energy demands
- Maintain occupant thermal comfort
- Maintain occupant visual comfort

METHODOLOGY:

EXPERIMENTAL DESIGN: Shading Devices


Three types of shading devices:

<u>2 roller shades (Draper - Phifer Sheer Weave)</u>

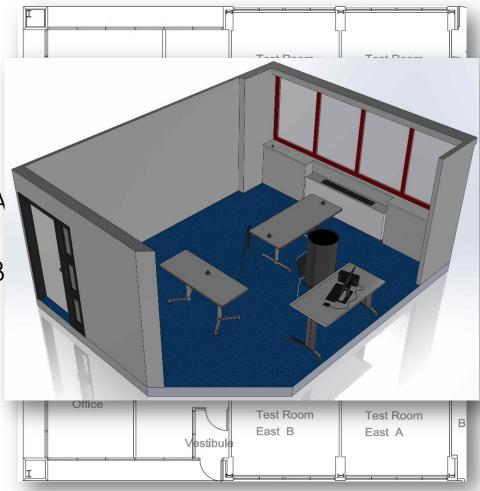
Shades	Openness Factor	Visible Transmittance	Solar Transmittance	Solar Absorptance	Solar reflectance	Color
Roller Shades 1	1 % (approx.)	1%	1%	95%	4%	Charcoal
Roller Shades 2	3% (approx.)	12%	17%	19%	64%	Oyster

Shades	Slat Size	Material	Tilt Angle	Solar Reflectance	Emissivity	Color
Blinds	2 in	Aluminum	-90 to 90	70%	0.76	Beige

EXPERIMENTAL DESIGN: Shading Devices

Motors for device automation

Shading Device	Motor
Roller Shades 1	Sonesse 506
Roller Shades 2	Sonesse 506
Venetian Blinds	Somfy ST40 Sonesse
	PA-Wired


Controller

Product	Vendor	Model No	BACnet Protocol
Name			Revision
EB-2	Embedia Technologies	1105001	135-2004
controller	Corp.(Vin 252)		

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

EXPERIMENTAL DESIGN: Test Rooms

6 exterior identical test rooms 2 each in East, South and West direction Test rooms A: Air Handling Unit A Test rooms B: Air Handling Unit B Each test rooms A and B equipped with variable air volume (VAV) box terminal

EXPERIMENTAL DESIGN

Test Doom	Ovientation	Clearingi	Shading Device ^b		vice ^b
Test Room	Orientation	Glazing ^a	Test 1	Test 2	Test 3
А	East	Gl-A	SD-A	SD-B	SD-C
В	East	Gl-B	SD-A	SD-B	SD-C
А	South	Gl-A	SD-C	SD-A	SD-B
В	South	Gl-B	SD-C	SD-A	SD-B
А	West	Gl-A	SD-B	SD-C	SD-A
В	West	Gl-B	SD-B	SD-C	SD-A

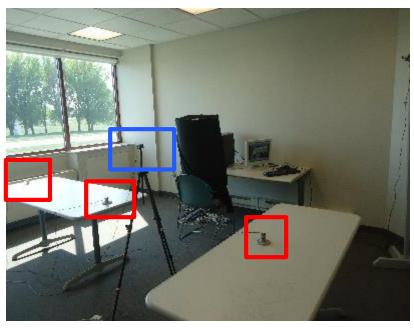
Multiple seasons

3 shading devices (2 roller shades, 1 blinds)

3 orientations (east, south, west)

> 2 window types (clear, low-e)

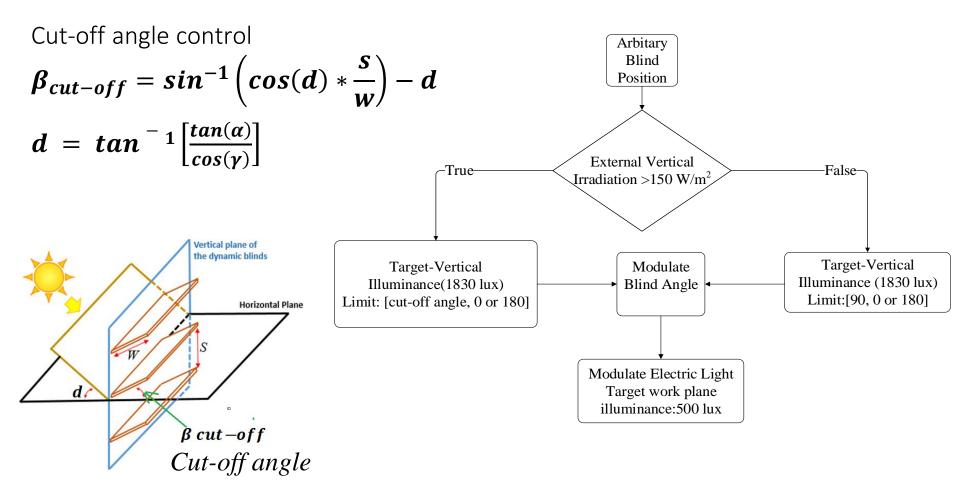
2 control strategies


3 different sky conditions (sunny, overcast, cloudy)

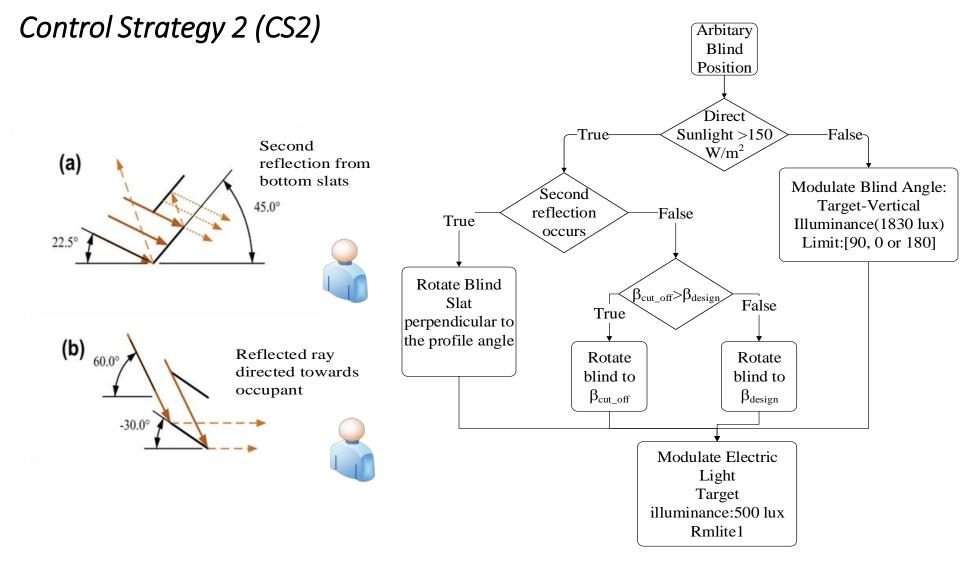
IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

EXPERIMENTAL DESIGN: Test Set Up

Illuminance sensor placement


Sensor	Height from floor		from
Work plane illuminance	0.76 m	1 m, 2.5	m, 4 m
Vertical illuminance	1.2 m	3 m	
Ceiling illuminance sensor	2.56 m	2.86 m	

Illuminance sensor placement

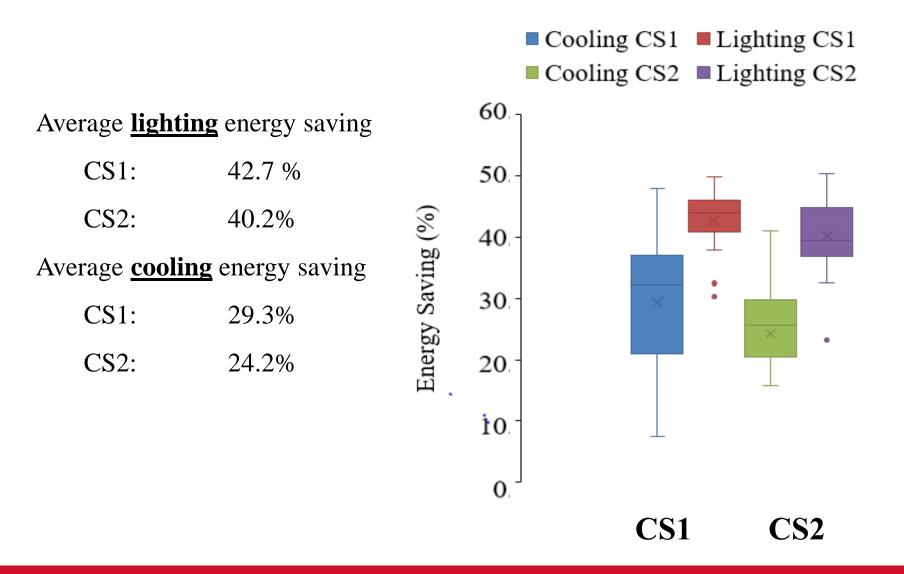

EXPERIMENTAL DESIGN: Shading & Lighting Control

Control Strategy 1 (CS1)

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

EXPERIMENTAL DESIGN: Shading & Lighting Control

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering


Orientation	Rotation	Shading Device	Control	Lighting Ene	rgy (kWh)	Percentage
Orientation	Rotation	Shading Device	Strategy	Test Room A	Test Room B	Savings (%)
	1	DS (104 VT)	1	37.41	22.49	39.89
	1	RS (1% VT)	2	29.67	17.29	41.74
Fort	2	DC (120/ VT)	1	31.62	16.97	46.34
East	2	RS (12% VT)	2	31.61	15.69	50.36
	2	VD	1	46.92	23.46	50.00
	3	VB	2	47.06	25.17	46.51
	1	VB	1	19.06	10.63	44.21
			2	16.03	8.08	49.61
Conth	2	RS (1% VT)	1	37.11	18.31	50.66
South			2	26.57	12.49	53.00
	2	DC (120/ VT)	1	36.69	17.20	53.13
	3	RS (12% VT)	2	31.49	14.64	53.51
		RS (12% VT)	1	33.65	21.71	35.46
	1		2	28.49	17.72	37.79
West	2	VB	1	34.38	18.84	45.20
West	2		2	45.59	24.71	45.80
	3	DC (10/ VT)	1	40.91	19.84	51.50
		3 RS (1% VT)	2	40.92	20.33	50.32

CS1 = control strategy 1, CS2 = control strategy 2, RS = rollershades, VB = venetian blinds

Lighting energy savings:

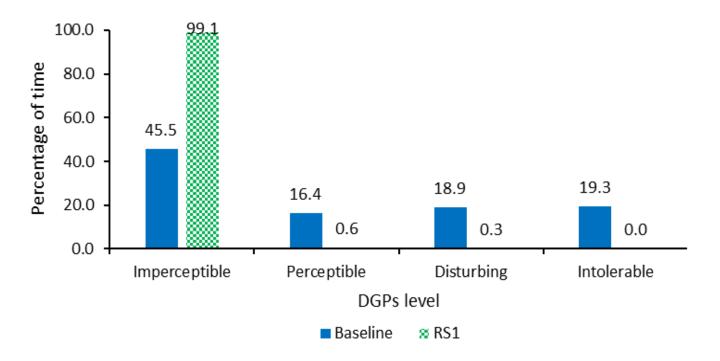
40% - 60%

More variability for venetian blinds vs. roller shades Control strategies, orientations = similar savings Lower for overcast days vs. sunny/cloudy days

Lighting energy savings:

40% - 60%

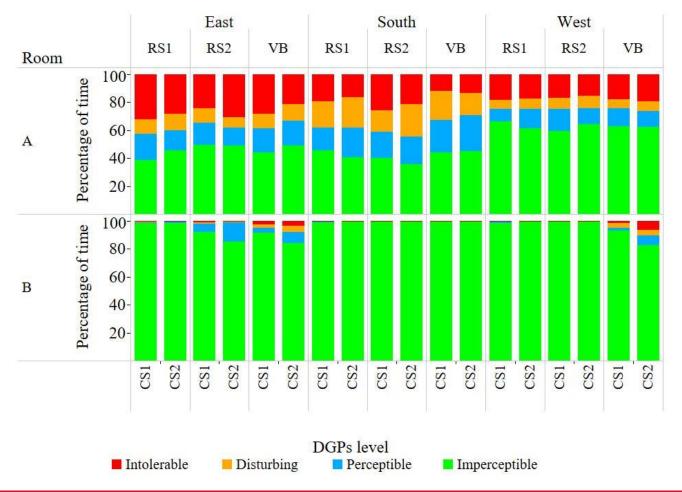
More variability for venetian blinds vs. roller shades Control strategies, orientations = similar savings Lower for overcast days vs. sunny/cloudy days


HVAC energy savings:

20% - 30% higher total energy savings compared to lighting

RESULTS: Full-scale Testing Visual Comfort

Daylight Glare Probability


$$DGP = (5.87 \ x \ 10^{-5})E_{v} + (9.18 \ x \ 10^{-2}) \ \log\left(1 + \sum_{i} \frac{L_{s,i}^{2} \omega_{s,i}}{E_{v}^{1.87} P_{i}^{2}}\right) + 0.16 \ (3.1)$$

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

RESULTS: Full-scale Testing Visual Comfort

Daylight Glare Probability

Lighting energy savings:

40% - 60%

More variability for venetian blinds vs. roller shades

Control strategies = similar savings

Lower for overcast days vs. sunny/cloudy days

HVAC energy savings:

20% - 30%

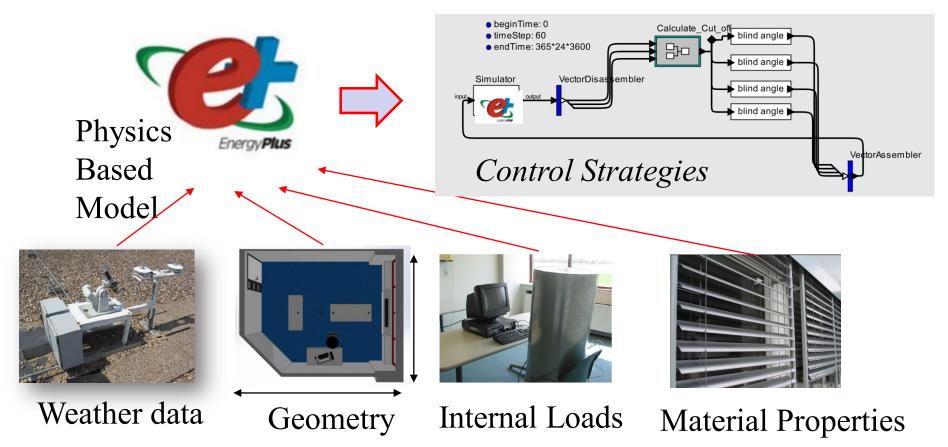
higher total energy savings compared to lighting


Visual Comfort:

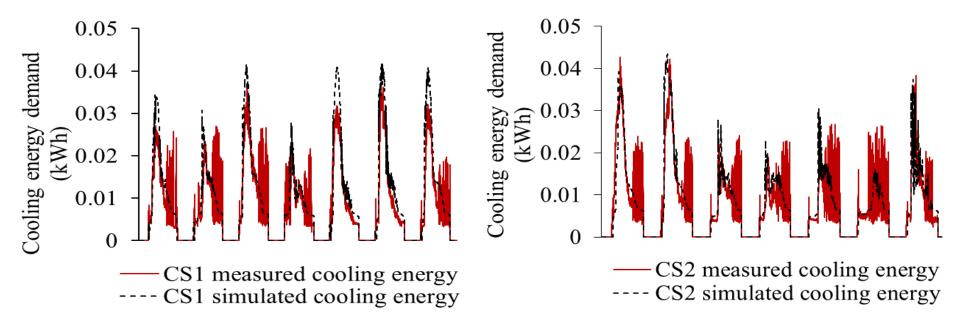
Significant improvement in visual comfort Challenges with direct sunlight vs. distraction

Thermal Comfort:

Maintained throughout testing


METHODOLOGY:

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering


Calibrated Simulation: Simulation Tools

Simulation: *EnergyPlus v8.5 + DIVA for Rhino*

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

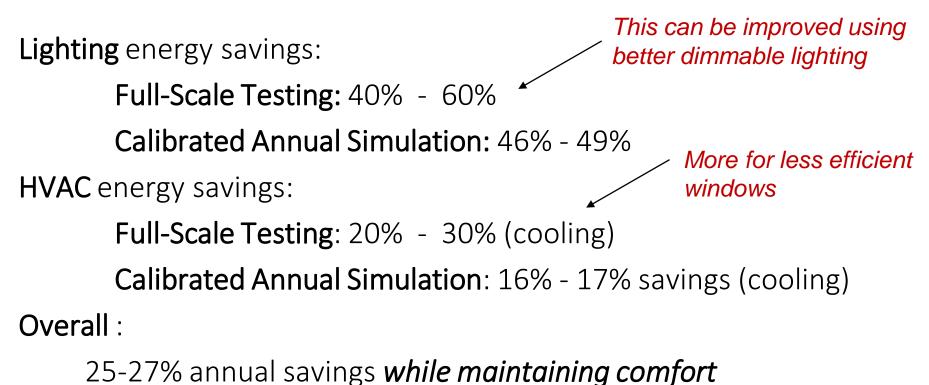
Calibrated Simulation: Control Strategy Comparison with Measured Data

Cooling energy consumption CS1 (left) and CS2 (right)

IOWA STATE UNIVERSITY College of Engineering | Department of Civil, Construction and Environmental Engineering

Calibrated Simulation: Error

Calibration error for data between 10 am to 6 pm


Case	MBE (Overall energy)	CV of RMSE (Overall energy)
Baseline	-6.2 %	17.7 %
Control Strategy 1	-6.9 %	22.6 %
Control Strategy 2	-10.4 %	19.2 %

Errors were within the range specified by <u>ASHRAE Guideline 14</u> MBE of 10% and CV of RMSE of 30% for hourly comparison

RESULTS: Annual Simulation

		Energy Consumption (kWh)		Energy Sav	Energy Saving (kWh)		Energy Saving Percentage (%)	
		Des Moines	Tampa	Des Moines	Tampa	Des Moines	Tampa	
Heating	Baseline	573	44					
	CS1	656	48	-82	-4.07	-14 %	- 9 %	
	CS2	663	48	-89	-8.42	-16 %	- 8 %	
Cooling	Baseline	3040	4746					
	CS1	2437	3986	602	760	20 %	16 %	
	CS2	2382	3927	657	819	22 %	17 %	
Lighting	Baseline	2087	2087					
	CS1	1148	1137	939	949	45 %	46 %	
	CS2	1098	1070	988	1017	47 %	49 %	
Total	Baseline	5702	6879					
	CS1	4242	5172	1459	1706	26 %	25 %	
	CS2	4145	5046	1556	1832	27 %	27 %	

CONCLUSIONS: Testing and Simulation

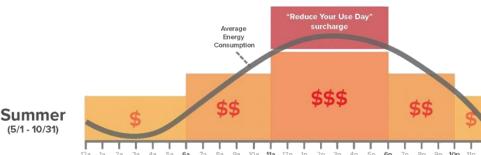
Dynamic shading is more beneficial for buildings with less efficient windows

Benefits in both heating- and cooling- dominated climates

NEXT STEPS: *Dynamic Fenestrations*

Cost Effectiveness & Non-Energy Benefit Quantification

Modeling Needs & Ease of model integration


East and West Orientations

Direct sunlight comfort evaluation/metric

Integration of occupant feedback

Distraction of blinds operations vs. movement to optimize performance

Control strategies that integrate dynamic and TOU pricing to reduce energy demands and costs

Kristen Cetin kcetin@iastate.edu